~~~~		-						120 100		
CHEN	$\Lambda$	ΛІ	DI	$\mathbf{n}$	MD	INC	TAI	ΛD	IZC	HEET
CHE		$\mathbf{AL}$	D	$\mathbf{U}$	VU	UVII	VV	UK	$\mathbf{r}$	пссі

Name:	-KEY-	Period:	

## Part I Bonds

1.	What is a che	mical bor	nd? a	1 6+	Hai	ction	between	particles	that
	holds	them	tone.	ther	in	a	compound.	F	

2. For the following compounds, determine if the elements are metals or nonmetals. Then, using that, figure out the type of bond (ionic, metallic, or covalent) that will form between the two elements:

A. NO2 COVALENT

B. NaCl ionic

C. FeSn Metallic

D. SO2 covalent

E. PI3 COVALENT

F. MgBr₂ ionic

G. AgCu metallic

H. K20 COVALENT IDNIC

I. CuCl2 ionic

J. AlF3 (onic

## Part II: Comparing Ionic and Molecular Compounds

3. What happens to the valence electrons in an ionic bond compared to the valence electrons in a covalent bond? ionic bonds donate or receive (give/take) electrons.

Covalent bonds share electrons. Both want to have a full octet.

4. In an ionic compound, the charges of the _______ and _____ and _____ must balance to produce an electrically ______ Neutral _____ substance. However, in a molecular compound the charges do not matter. In a molecular compound, each atom wants to achieve a full of the charges do not matter.

5. In the space below, complete a Lewis dot structure to show how beryllium fluoride (BeF₂) is formed (notice that BeF₂ is ionic). Use the Notes on pages 102-104 of your NOTEBOOK as a model. Then draw the Lewis structure for hydrofluoric acid (HF)(notice that HF is a molecule).

BeF₂  $\left[ : F : \right]^{1} \left[ Be \right]^{2+} \left[ : F : \right]^{1-}$ 

HF H-F:

Explain why BeF2 and HF are drawn so differently.

Betz is ionic & the bonds are based on attractive charges. HF is a molecule so dashes are drawn to show shared e-

6. Explain the similarities and difference between formula units and molecules.

A formula unit is the fundamental unit of an ionic compound. A molecule is the same, but for covalent compounds.

## Part III: Covalent bonds and Lewis Structures

For the following compounds, write the total number of valence electrons in the compound and draw the Lewis dot structure. Be sure to double-check your work that the drawing has the correct number of electrons and all elements have an octet (except hydrogen!).

7. H₂

 $14. H_2 O_2$ 

8. H₂O

15. SH₂

9. CCl₄

16. PH₃

 $10.C_2H_6$ 

17. Br₂

11.  $N_2H_4$ 

18. CH₃Br

12. NCl₃

19. CH₃OH

13. HCN

20. CH₂I₂